Step of Proof: sq_stable__iff
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
sq
stable
iff
:
1.
P
:
2.
Q
:
3. SqStable(
P
)
4. SqStable(
Q
)
SqStable(
P
Q
)
latex
by
InteriorProof
((((Repeat (Unfolds ``iff rev_implies`` 0))
CollapseTHEN (
CollapseTHEN (
Backchain ``sq_stable__and sq_stable__implies``))
)
CollapseTHEN (
CollapseTHEN (
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
CollapseTHEN (
) inil_term)))
latex
C
.
Definitions
P
Q
,
P
Q
,
P
Q
,
t
T
,
,
x
:
A
.
B
(
x
)
Lemmas
sq
stable
implies
,
sq
stable
and
origin